
Whitewash: Outsourcing Garbled Circuit Generation for
Mobile Devices

Henry Carter
Georgia Institute of

Technology

carterh@gatech.edu

Charles Lever
Georgia Institute of

Technology

chazlever@gatech.edu

Patrick Traynor
University of
Florida

traynor@cise.ufl.edu

ABSTRACT

Garbled circuits offer a powerful primitive for computation on a
user’s personal data while keeping that data private. Despite re-
cent improvements, constructing and evaluating circuits of any use-
ful size remains expensive on the limited hardware resources of a
smartphone, the primary computational device available to most
users around the world. In this work, we develop a new tech-
nique for securely outsourcing the generation of garbled circuits
to a Cloud provider. By outsourcing the circuit generation, we are
able to eliminate the most costly operations from the mobile de-
vice, including oblivious transfers. Our proofs of security show
that this technique provides the best security guarantees of any ex-
isting garbled circuit outsourcing protocol. We also experimentally
demonstrate that our new protocol, on average, decreases execu-
tion time by 75% and reduces network costs by 60% compared to
previous outsourcing protocols. In so doing, we demonstrate that
the use of garbled circuits on mobile devices can be made nearly as
practical as it is becoming for server-class machines.

1. INTRODUCTION
Mobile devices have become one of the dominant computing

platforms, with approximately 57% market penetration in the United
States alone [9]. These devices are capable of gathering and storing
all of a user’s personal data, from current location and social con-
tacts to banking and electronic payment information. Because of
the personal nature of these devices, it is critical that a user’s infor-
mation be protected at all times. Unfortunately, many smartphone
applications that require users to send data to application servers
make preserving the privacy of this data difficult.

To resolve this issue, a variety of secure multiparty computa-
tion techniques exist that could be leveraged to perform compu-
tation over encrypted inputs [6, 11, 12, 28]. Currently, the most
practically efficient two-party technique is the Yao Garbled Cir-
cuit [43]. Despite recent improvements in the efficiency of gar-
bled circuits [27, 41], this technique still requires significant com-
putation and communication resources, rendering it impractical for
most smartphones. One possible solution to this imbalance of re-
sources is to blindly outsource the heavy computation to the Cloud.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ACSAC ’14 December 08 - 12 2014, New Orleans, LA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3005-3/14/12.̇.$15.00

http://dx.doi.org/10.1145/2664243.2664255

However, because of the untrusted nature of Cloud providers [42],
such a solution fails to provide measurable guarantees for applica-
tions requiring high assurance.

In this work, we develop a new protocol for securely outsourc-
ing garbled circuit generation to an untrusted Cloud. We construct a
protocol that offloads the role of generating the garbled circuit from
the mobile device to the Cloud without exposing any private inputs
or outputs. By choosing to outsource this portion of the protocol,
we eliminate a significant number of expensive public-key cryptog-
raphy operations and rounds of communication used in oblivious
transfer. The result is a more computationally and bandwidth effi-
cient outsourcing protocol with the strongest security guarantees of
any outsourcing technique to date [8, 23].

In this paper, we make the following contributions:
• Develop a new outsourcing protocol: We develop the White-

wash1 outsourcing protocol, which allows a mobile device par-
ticipating in a two-party secure function evaluation to outsource
the generation of the garbled circuit. Our protocol assigns the
mobile device the role of circuit generator instead of circuit
evaluator, outsourcing a completely different set of operations
from previous outsourcing protocols [8, 23]. By reversing the
functions of the two players, we fully eliminate the require-
ment for any oblivious transfers, outsourced or otherwise, to
or from the mobile device. This “simple” role reversal requires
fundamentally redesigning the outsourcing techniques used in
previous work, as well as new security proof formulations.

• Formal verification and analysis: We formally prove the se-
curity of our outsourcing techniques in the malicious model
defined by Kamara et al. [23]. Unlike previous work [8, 23],
our protocol provides security when the mobile device is col-
luding with its Cloud provider against the application server.
This added security guarantee makes our protocol the most se-
cure outsourcing protocol to date. We then provide an anal-
ysis of the reduction in operations between our work and the
outsourced oblivious transfer of Carter et al. [8], as well as
the Salus framework by Kamara et al. [23]. Specifically, our
protocol requires more executions of a pseudorandom number
generator in exchange for fewer algebraic group operations and
zero-knowledge proofs. Moreover, we significantly reduce the
number of rounds of communication required to the mobile
device.

• Implement and evaluate the performance of our protocol:

In our performance evaluation, we demonstrate a maximum
improvement of 98% in execution time and 92% improvement
in bandwidth overhead compared to Carter et al. [8] (with 75%
and 60% average improvement, respectively). For a different

1A reference to Tom Sawyer, who “outsourced” his chores to his
friends without ever revealing the true nature of the work.



test application, when compared to performing computation
directly on the mobile device [28], we demonstrated a 96%
and 90% improvement in execution time and bandwidth, re-
spectively. These improvements allow for the largest circuits
evaluated on any platform to be computed from a mobile de-
vice efficiently and with equivalent security parameters to non-
mobile protocols.

The rest of this work is organized as follows: Section 2 provides
detail on related research; Section 3 describes our threat model and
security definition; Section 4 provides a description of the White-
wash protocol; Section 5 compares the operations required in our
protocol to the protocols by Carter et al. and Kamara et al.; Sec-
tion 6 describes our empirical performance analysis; and Section 7
provides concluding remarks.

2. RELATED WORK
Fairplay [35] provided the first practically efficient implementa-

tion of Yao’s garbled circuit protocol [43], requiring only simple
hash and symmetric key operations to securely evaluate an arbi-
trary function. Since then, a variety of garbled circuit-based se-
cure function evaluation (SFE) protocols have been developed in
the semi-honest adversarial model [5, 16, 20, 21, 29, 31, 34, 39].
The latest of these, developed by Huang et al. [16], allows gar-
bled circuits to be evaluated in stages, which makes it the most
efficient semi-honest garbled circuit evaluation technique, both in
computation and memory requirements. In recent work, several
garbled circuit SFE protocols have been developed in the malicious
security model, which require significantly more computational re-
sources than semi-honest protocols, but are secure against arbitrary
polynomial-time adversaries [18, 26, 28, 30, 33, 37, 40]. The pro-
tocol by shelat and Shen [41] provides a two-party garbled circuit
protocol which uses only symmetric-key constructions outside of
the oblivious transfer. When combined with Huang’s pipelining
approach and the PCF compiler by Kreuter et al. [27], their proto-
col is among the most efficient maliciously-secure garbled circuit
protocols implemented to date. Some efforts have been made to
improve the efficiency of these protocols by slightly reducing the
adversary model. Many schemes have been developed in the covert
adversary model, which allows for some efficiency gains at the cost
of security [2, 10, 15, 36]. Huang et al. [17] developed a protocol
that leaks only one bit of input to a malicious adversary through
dual execution, which was later implemented on GPUs by Husted
et al. [19]. In order to further improve the efficiency of garbled
circuit protocols, Gordon et al. [13] developed a protocol that com-
bined Oblivious RAM with garbled circuits, allowing sub-linear
amortized complexity. However, this protocol only allows this per-
formance gain for functions that can be computed efficiently on a
random-access machine. Other work has focused on making circuit
compilation and garbling more efficient [4, 38]. These techniques
improve the underlying operations found in all garbled circuit exe-
cution protocols, providing improvement in all existing techniques.

To further improve the speed of cryptographic protocols on de-
vices with minimal computational resources, the idea of outsourc-
ing cryptographic operations has been explored for many years in
the field of Server-assisted cryptography [3]. More recently, Green
et al. [14] developed a technique for outsourcing the costly decryp-
tion of attribute-based encryption schemes to the cloud without re-
vealing the contents of the ciphertext. Atallah and Frikken [1] de-
veloped a set of special-purpose protocols for securely outsourc-
ing Linear Algebra computations to a single cloud server. For
data mining applications, Kerschbaum recently developed an out-
sourced set intersection protocol using homomorphic encryption
techniques [24]. While all of these applications provide significant

performance gains for specific cryptographic applications, none of
them address outsourcing of general secure computation.

In their Salus protocol, Kamara et al. [22, 23] developed two pro-
tocols for securely outsourcing the computation of arbitrary func-
tions to the cloud. Following Salus, Carter et al. [8] developed an
outsourcing protocol based on the maliciously secure garbled cir-
cuit protocol by Kreuter et al. [28]. Carter’s protocol outsources the
evaluation of garbled circuits by adding in an Outsourced Oblivious
Transfer primitive. Their participant configuration is the same con-
figuration found in Kamara’s maliciously secure protocol, where
the cloud is made responsible for evaluating the garbled circuit. In
this work, we choose to build on shelat and Shen’s latest proto-
col [41] since the symmetric execution environment of Huang et
al. [18] does not lend itself to outsourcing, and the bootstrapping
technique used by Lindell [30] has not been implemented or evalu-
ated in practice. Unlike previous work, we choose to fundamentally
rearrange the roles of the participants, outsourcing the generation
of the garbled circuits as in Kamara’s covertly secure protocol.

3. OVERVIEW AND DEFINITIONS

3.1 Protocol Goals and Summary
The primary reason for developing an outsourcing protocol for

secure function evaluation is to allow two parties of asymmetrical
computing ability to securely compute some result. Current two-
party computation protocols assume both parties are equipped with
equivalent computing resources and so require both parties to per-
form comparable operations. However, when a mobile device is
taking part in computation with an application server, some tech-
nique is necessary to reduce the complexity of the operation on the
mobile device. Ideally, we can make the mobile device perform
some small number of operations that is independent of the size of
the circuit being evaluated.

In constructing such a protocol, there are four goals that we
would like to satisfy. The first of these goals is correctness. It
is necessary that an outsourcing protocol must produce correct out-
put even in the face of malicious players attempting to corrupt the
computation. The second desirable guarantee is security. SFE pro-
tocols frequently use a simulation-based approach to defining and
proving security, which we outline in detail below. Essentially, the
goal is to show that each party can learn the output of the computed
function and nothing else. Third, an ideal protocol would provide
some guarantee of fair release. This guarantee ensures that either
both parties receive their outputs from the computation, or neither
party receives their output. Our protocol achieves this in all but one
corruption scenario by treating the Cloud as an arbiter, who will
simultaneously and fairly release the outputs of the protocol using
one-time pads. In the scenario where the mobile device and Cloud
are colluding, it is possible for the Cloud to terminate the protocol
after the mobile device receives output but before the application
server receives output. However, this is inherently possible in most
two-party garbled circuit protocols. The fourth goal of our protocol
is efficiency. Our outsourcing protocol balances a minimal set of
operations on the mobile device with efficient multiparty computa-
tion operations on the application server and Cloud.

Given these goals, we build our protocol in the two-party server-
aided multiparty computation setting. This setting is composed of
two parties, the mobile device and an application server, who wish
to run a two-party secure computation while keeping both of their
inputs private. To assist the mobile device, the server-aided setting
adds a third party Cloud provider, which is independent and non-
colluding with the application server (more on non-collusion in the
following section). The Cloud performs cryptographic operations



for the mobile device, but is not allowed to see any party’s input or
output from the computation.

To achieve our goals in this setting, we first select the most ef-
ficient two-party garbled circuit computation protocol to date that
provides guarantees of correctness and security in the malicious
model. We assign the mobile device the role of circuit generator in
this protocol, and the application server is assigned the role of cir-
cuit evaluator. To outsource the circuit generation operations from
the mobile device, we allow the device to generate short random
seeds and pass these values to a Cloud computation provider, which
then generates the garbled circuits using these seeds to generate
randomness. Thus, the mobile device’s work is essentially reduced
to (1) generating random strings on the order of a statistical secu-
rity parameter, and (2) garbling and sending its input values to the
evaluating party. In this way, we develop a secure computation pro-
tocol where the mobile device performs work that is independent of
the size of the function being evaluated. We provide a formal proof
of security for our protocol in our technical report [7].

3.2 Non-collusion
To maintain security, previous outsourcing protocols assume that

neither party colludes with the Cloud [8, 23]. The theoretical in-
tuition for this constraint, outlined by Kamara et al. [23], is that
the existence of an outsourcing protocol where parties can arbitrar-
ily collude would imply a two-party secure multiparty computation
protocol where one party performs sub-linear work with respect to
the size of the circuit. While this has been shown to be possible
using fully homomorphic encryption and, in some cases, oblivious
RAM [13], it is not clear that these techniques can be efficiently
applied to a garbled circuit outsourcing scheme. Because of this,
previous work has left the more complex security model for fu-
ture study. However, while previous protocols restrict collusion
between the Cloud and any party, the sub-linear work implication
only applies to cases when the Cloud is generating circuits and col-
ludes with the evaluating party, or vice versa. In the Whitewash
protocol, we prove security when the mobile device colludes with
the Cloud against the evaluating web application. While this collu-
sion scenario removes the fair release guarantee of our protocol, it
in no way compromises the security guarantees of confidentiality of
participant’s inputs and outputs. Essentially, it reduces to the two-
party computation scenario that the underlying protocol is proven
to be secure in. Since the mobile device is paying the Cloud for
computation services, we believe it is a more realistic assumption
to assume that a Cloud provider could collude maliciously with the
paying customer, and note that our protocol is the first outsourcing
protocol to provide any security guarantees in the face of collusion
with the Cloud.

3.3 Security Constructions
In the two-party computation protocol underlying our work, she-

lat and Shen implement a number of new and efficient crypto-
graphic checks to ensure that none of the parties participating in the
computation behave maliciously. We provide an overview of these
security checks in the following section. We refer the reader to she-
lat and Shen’s work for more formal definitions and proofs [41].

3.3.1 k-probe-resistant input encoding
When working with garbled circuit protocols in the malicious

model, the generator has the ability to learn information about the
evaluator’s input by corrupting the wire labels sent during the obliv-
ious transfer. This attack, known as selective failure, was first pro-
posed by Mohassel and Franklin [37] as well as Kiraz and Schoen-
makers [25]. In the server-aided setting, it is possible that the mo-

bile device and the Cloud could collude and carry out this attack to
recover the application server’s input. To prevent this attack, she-
lat and Shen [41] implement an improved version of the k-probe-
resistant input encoding mechanism originally proposed by Lindell
and Pinkas [32]. In their protocol, the evaluator does not input her
real input y to the computation, but chooses her input y such that
M · y = y for a k-probe resistant matrix M. Intuitively, the idea
is that the generator would have to probe the evaluator’s input ap-
proximately 2k times before learning anything about her input y.

3.3.2 2-Universal Hash Function
A second concern with garbled circuits in the malicious model

is that the generator may send different input values for each of the
evaluated circuits from the cut-&-choose. As in the two-party set-
ting, it is possible for the mobile device to submit inconsistent in-
puts to the application server in the server-aided setting. To ensure
that the generator’s inputs are consistent across evaluation circuits,
shelat and Shen implement an efficient witness-indistinguishable
proof, which computes a randomized, 2-universal hash of the in-
put value using only arithmetic operations on matrices. Because of
the regularity guarantees of a 2-universal hash, the outputs of these
hash operations can be seen by the evaluator without revealing any
information about the generator’s inputs. However, if any of the
hashed input values is inconsistent across evaluation circuits, the
evaluator can infer that the generator provided inconsistent inputs,
and can terminate the protocol.

3.3.3 Output proof of consistency
When a function being evaluated using garbled circuits has sep-

arate, private outputs for the generating and evaluating parties, it is
necessary to ensure that the evaluating party does not tamper with
the generating party’s output. Since the output must be decoded
from the garbled output wires for the majority check at the end of
the protocol, if the output is only blinded with a one-time pad, this
allows the evaluator the opportunity to change bits of the genera-
tor’s output. Our setting faces the same potential for attack from the
application server, who is responsible for evaluating the circuit and
distributing the blinded output. Several techniques for preventing
this kind of tampering have been proposed, but shelat and Shen’s
latest protocol [41] implements a witness-indistinguishable proof
that uses only symmetric key cryptographic operations. After the
evaluator sends the blinded output of computation to the genera-
tor, the proof guarantees to the generator that the output value he
received was actually generated by one of the garbled circuits he
generated. However, it keeps the index of the circuit that produced
the output hidden, as this could leak information to the generator.

3.4 Security Model and Definition
Our definition of security is based on the definition proposed by

Kamara et al. [23], which we specify for the two-party setting as
in Carter et al. [8]. We provide a brief description of the real/ideal
world model here and direct readers to the previous work in this
space for a more formal definition.

In the real world, both parties participating in the computation
(the mobile device and application server) provide an input to the
computation and an auxiliary input of random coins, while the sin-
gle party designated as the outsourcing party (the Cloud) provides
only random auxiliary input. The party evaluating the circuit in this
computation is assumed to be non-colluding with the outsourcing
party, as defined by Kamara et al. Some subset of these parties
A = (A1, A2, A3) are corrupted and can deviate arbitrarily from
the protocol. For the ith honest party, let OUTi be its output, and
for the ith corrupted party, let OUTi be its view of the protocol



2:  Random seeds & input 
decommitments

2:
 C

om
m

it 
in

pu
t

3:
 C

irc
ui

t p
re

pa
ra

tio
n 2: Com

m
it input

4:
 O

bl
iv

io
us

 tr
an

sf
er

s

1: Prepare 
input

6:  Prove output 

correctness

5:
 C

irc
ui

t e
va

lu
at

io
n

6:
 R

el
ea

se
 o

ut
pu

ts

6: Release outputs

1: Prepare 
input

1: Prepare 
input

Figure 1: The complete Whitewash protocol. Note that MO-

BILE performs very little work compared to SERVER and

CLOUD.

execution. Then the ith partial output of a real protocol execution
with input x is defined as:

REAL(i)(k, x; r) = {OUTj : j ∈ H} ∪OUTi

Where H is the set of honest parties, r is all random coins of all
participants, and k is the security parameter.

In the ideal world, each party provides the same inputs as in the
real world, however, they are sent to a trusted oracle which per-
forms the secure computation. Once the trusted oracle completes
the computation, it returns the output to the participating parties
and no output to the outsourcing party. If any party aborts early or
sends no input to the oracle, the oracle aborts and does not send
the output to any party. For the ith honest party, let OUTi be its
output to the oracle, and for the ith corrupted party, let OUTi be an
arbitrary output value produced by the party. Then the ith partial
output of an ideal protocol execution in the presence of independent
malicious simulators S = (S1, S2, S3) is defined as:

IDEAL(i)(k, x; r) = {OUTj : j ∈ H} ∪OUTi

Where H, r, and k are defined as before. Given this model, security
is formally defined as:

DEFINITION 1. An outsourcing protocol securely computes the
function f if there exists a set of probabilistic polynomial-time (PPT)
simulators {Simi}i∈[3] such that for all PPT adversaries
(A1, A2, A3), inputs x, auxiliary inputs z, and for all i ∈ [3]:

{REAL(i)(k, x; r)}k∈N
c≈ {IDEAL(i)(k, x; r)}k∈N

Where S = (S1, S2, S3), Si = Simi(Ai), and r is uniformly
random.

4. PROTOCOL

4.1 Participants
Given a mobile device and a web or application server who wish

to jointly compute a function, there are three participating parties
in the Whitewash protocol:
• SERVER: “SERVER” refers to the web or application server

participating in the joint computation. She is assumed to have
large computational resources and is responsible for evaluating
the garbled circuits.

• MOBILE: “MOBILE” refers to the mobile device participating
in the joint computation. He is assumed to have limited pro-
cessing power, memory, and communication bandwidth. MO-
BILE is tasked with garbling the circuit to be evaluated by
SERVER.

• CLOUD: The outsourcing party “CLOUD” is responsible for
relieving MOBILE of the majority of his computational load,
but is not trusted with knowing either party’s input to or output
from the joint computation.

4.2 Protocol
Common Inputs: Security parameters k (key length) and σ (the
number of circuits generated for the cut-&-choose); a commitment
scheme com(x; c) with committed value x and commitment key c;
and a function f(x, y).
Private Inputs: MOBILE inputs x and SERVER inputs y.
Outputs: Two outputs fs, fm for SERVER and MOBILE, respec-
tively.

Phase 1: Pre-computation

1. Preparing inputs: MOBILE randomly generates
r ∈ {0, 1}2k+log(k) as his input to the 2-universal circuit. He

also generates e ∈ {0, 1}|fm| as a one-time pad for his out-
put. SERVER computes her k-probe-resistant matrix M and y
such that M · y = y. MOBILE’S input to the circuit will be
x = x‖e‖r and SERVER’S input will be y. We denote the set
of indices [ms] = {1, · · · , |y|} and [mm] = {1, · · · , |x|}.

2. Preparing circuit randomness: MOBILE generates random
seeds {ρ(j)}j∈[σ] for generating the circuits and sends them to
CLOUD.

Phase 2: Input commitments

1. Committing to MOBILE’S inputs: For each circuit j ∈ [σ],

input bit i ∈ [mm], and b ∈ {0, 1} MOBILE uses ρ(j) to

generate commitment keys θ
(j)
i,b . Using the same random seeds,

these keys will later be generated by CLOUD to commit to the
input wire labels corresponding to MOBILE’S input. MOBILE

then commits to his own inputs as {Γ(j)}j∈[σ] as:

Γ(j) = {com(θ
(j)
i,xi

; γ
(j)
i )}i∈[mm]

using independently generated random commitment keys γ
(j)
i .

MOBILE sends {Γ(j)}j∈[σ] to SERVER and the commitment

keys {γ(j)
i }i∈[mm],j∈[σ] to CLOUD.

2. Committing to CLOUD’S inputs: To allow for a fair release
of the outputs, CLOUD inputs one-time pads to blind both par-
ties’ outputs. CLOUD randomly generates ps ∈ {0, 1}|fs| and

pm ∈ {0, 1}|fm|, as well as rc ∈ {0, 1}2k+log(k) as its in-
put to the 2-universal circuit. We denote CLOUD’S input as
z = ps‖pm‖rc, and the indices of CLOUD’S input wires as
[mc] = {1, · · · , |z|}.
For each circuit j ∈ [σ] and input bit i ∈ [mc], CLOUD uses

{ρ(j)}j∈[σ] to generates the garbled input wire keys

(K
(j)
i,0 ,K

(j)
i,1 , π

(j)
i ), where K

(j)
i,0 ,K

(j)
i,1 ∈ {0, 1}k and the per-

mutation bit π
(j)
i ∈ {0, 1}. To locate the correct key for

bit b on input wire wi of circuit j, we designate the label

W
(j)
i,b = (K

(j)
i,b , b⊕ π

(j)
i ).

Let {wms+i}i∈[mc] be the input wires for CLOUD. CLOUD

then commits to the label pairs for its input wires as {Ψ(j)}j∈[σ],



where

Ψ(j) = {com(W
(j)

ms+i,0⊕π
(j)
i

;ψ
(j)

i,0⊕π
(j)
i

),

com(W
(j)

ms+i,1⊕π
(j)
i

;ψ
(j)

i,1⊕π
(j)
i

)}i∈[mc]

using commitment keys ψ
(j)
i,b generated with the random seed

ρ(j). CLOUD then commits to its inputs as {Ξ(j)}j∈[σ] as:

Ξ(j) = {com(ψ
(j)
i,zi

; ξ
(j)
i )}i∈[mc]

using independently generated random commitment keys.
CLOUD sends {Ψ(j)}j∈[σ] and {Ξ(j)}j∈[σ] to SERVER.

Phase 3: Circuit construction

1. Constructing the objective circuit: SERVER sends M to
CLOUD, then SERVER and CLOUD run a coin flipping proto-
col to randomly determine the 2-universal hash matrix H ∈
{0, 1}k×mm . These two matrices can be used to generate
the new circuit C that computes the function g : (x, y) →
(⊥, (hm, hc, cs, cm)), where hm = H · x, hc = H · z, gm =
fs(x,M · y), cm = gm ⊕ e ⊕ pm, gs = fs(x,M · y), and
cs = gs ⊕ ps. MOBILE will need the values hc‖cm to recover
his output. We denote the set of indices corresponding to these
values as Om = {1, · · · , |hc|+ |cm|}.

2. Committing to input and output wire label pairs: Using the
same method as in Phase 2, CLOUD uses {ρ(j)}j∈[σ] to gener-
ate the input wire keys for both SERVER and MOBILE’S input
as well as the output wire keys for MOBILE’S output (these
output keys must be committed for the witness indistinguish-
able proof of MOBILE’S output correctness). Let {wi}i∈[mm]

be the input wires for MOBILE, {wmm+i}i∈[ms] be the input
wires for SERVER, and {wi}i∈Om . CLOUD then commits to
the label pairs in MOBILE’S input, SERVER’S input, and MO-
BILE’S output as {Θ(j),Ω(j),Φ(j)}j∈[σ], where

Θ(j) ={com(W
(j)

i,0⊕π
(j)
i

; θ
(j)

i,0⊕π
(j)
i

),

com(W
(j)

i,1⊕π
(j)
i

; θ
(j)

i,1⊕π
(j)
i

)}i∈[mm]

Ω(j) ={com(W
(j)
mm+i,0;ω

(j)
i ), com(W

(j)
mm+i,1;ω

(j)
i )}i∈[ms]

Φ(j) ={com(W
(j)
i,0 ;φ

(j)
i ), com(W

(j)
i,1 ;φ

(j)
i )}i∈Om

using commitment keys generated with the random seed ρ(j).
CLOUD then sends these commitments to SERVER.

Phase 4: Oblivious transfers (OT)

1. Oblivious transfers: CLOUD and SERVER execute ms input
oblivious transfers and σ circuit oblivious transfers as follows:

(a) Input: For each i ∈ [ms], both parties run a
(
2

1

)
-OT

where CLOUD inputs(
{(W (j)

mm+i,0;ω
(j)
i )}j∈[σ], {(W (j)

mm+i,1;ω
(j)
i )}j∈[σ]

)

while SERVER inputs yi. Once SERVER receives all of
her garbled input wire labels, she uses the decommitment
keys obtained in the OTs to check the committed wire
values in {Ω(j)}j∈[σ]. If any of the labels received in
the OT do not match the committed wire labels, SERVER

terminates the protocol.
(b) Circuit: SERVER selects a set of circuits to be evaluated

S ⊂ [σ] such that |S| = 2σ
5

, as in shelat and Shen’s
protocol [40]. She represents this set with a bit string
s ∈ {0, 1}σ such that the jth bit sj = 1 if j ∈ S
and sj = 0 otherwise. SERVER and CLOUD perform σ(
2

1

)
-OTs where, for every j ∈ [σ], CLOUD inputs

Protocol SYM GROUP OT CT

CMTB |x| 2σ
5
(|y|+ 1) k yes

Salus 2σ
5
(|x|+ |y|+ |f(x, y)|) - - yes

WW σ(|x|+ 2

5
|fm(x, y)|) - - no

Table 1: Operations required on the mobile device by three out-

sourcing protocols. Here, SYM is the symmetric cryptographic

operations, GROUP is the group algebraic operations, OT is

the oblivious transfers, and CT is whether the protocol requires

a coin toss. Recall that k is the security parameter, σ is the num-

ber of circuits generated, x is the mobile device’s input, and y
is the application server’s input.

(ρ(j), ({γ(j)
i }i∈[mm]‖{Ξ(j)

i }i∈[mc])), while SERVER in-
puts sj . This allows SERVER to learn either the ran-
domness used to generate the check circuits or MOBILE

and CLOUD’S inputs for the evaluation circuits without
CLOUD knowing which circuits are being checked or eval-
uated.

Phase 5: Evaluation

1. Circuit evaluation: Using ρ(j), CLOUD garbles the objective
circuit C as G(C)(j) for all j ∈ [σ] and pipelines these cir-
cuits to SERVER using Huang’s technique [16]. Depending on
whether the circuit is a check circuit or an evaluation circuit,
SERVER performs one of two actions:

(a) Check: For each j ∈ [σ]\S, SERVER checks to see if

ρ(j) can correctly regenerate the committed wire values
{Θ(j),Ω(j),Φ(j),Ψ(j)} and the circuit G(C)(j).

(b) Evaluate: For each j ∈ S, SERVER checks that she can
correctly decommit MOBILE’S input by recovering half
of Θ(j) from the keys committed in Γ(j). She does the
same for CLOUD’S input, recovering half of Ψ(j) from
the keys committed in Ξ(j)

If any of the above checks fail, SERVER aborts the protocol.
Otherwise, she evaluates the circuits {G(C)(j)}j∈[σ]\S . Each

circuit outputs the values (h
(j)
m , h

(j)
c , c

(j)
s , c

(j)
m ) for j ∈ [σ]\S.

2. Majority output selection and consistency check: Let
(hm, hc, cs, cm) be the output of the majority of the evaluated
circuits. If no majority value exists, SERVER aborts the proto-

col. Otherwise, she checks that h
(j)
m = hm and h

(j)
c = hc for

all j ∈ [σ]\S. If any of MOBILE or CLOUD’S hashed input
values do not match, SERVER aborts the protocol.

Phase 6: Output proof and release

1. Proof of output authenticity: SERVER and MOBILE perform
the proof of output authenticity from shelat and Shen’s pro-
tocol [41] using the commitments to MOBILE’S output wires
{Φ(j)}j∈[σ]\S and the values hc‖cm.

2. Output release: CLOUD simultaneously releases the input one-
time pads ps and pm to SERVER and MOBILE. SERVER and
MOBILE then hash the pads and check to see if the hash values
output by the circuit hc = H · ps‖pm. If the hashes do not
match, SERVER and MOBILE abort the protocol. Otherwise,
SERVER receives cs ⊕ ps as her output and MOBILE receives
cm ⊕ pm ⊕ e as his output.

5. COMPARISON WITH PREVIOUS OUT-

SOURCING PROTOCOLS
In this section, we compare the asymptotic complexity and se-

curity guarantees of the Whitewash protocol to two previous out-
sourcing techniques: the protocol developed by Carter et al. [8],
which we call “CMTB” for the remainder of this work, and the
Salus framework developed by Kamara et al. [23]. We refer to our



Whitewash protocol as WW.
When examining the complexity of each protocol, recall that one

of our main goals is to optimize the efficiency on the mobile de-
vice. Thus, we examine the number of operations each protocol
requires on the mobile device itself. When compared to the un-
derlying shelat-Shen protocol, Whitewash adds extra input values
from the Cloud, but does not add any steps to the computation that
increase the complexity of operations performed on the application
server or the Cloud. Thus, for a discussion of the application server
and Cloud protocol complexity, we refer the reader to the original
work by shelat and Shen [41].

5.1 Comparison to CMTB
The underlying two-party computation protocols of Whitewash

and CMTB follow similar structures in terms of the security checks
that are performed. However, Kreuter, shelat, and Shen’s (KSS)
protocol [28], which underlies CMTB, uses a number of algebraic
operations to perform input consistency checks and output proofs
of consistency. The protocol developed by shelat and Shen [41],
which underlies Whitewash, removes these expensive cryptographic
primitives in favor of constructions that use only efficient, symmetric-
key operations. In addition to the improvements to the underly-
ing protocol, Whitewash outsources the generation side of two-
party computation, while CMTB outsources the evaluation side. In
CMTB, since neither the mobile device or the Cloud could garble
inputs before computation, a specially designed Outsourced Obliv-
ious Transfer (OOT) protocol is necessary to deliver the mobile de-
vice’s inputs to the evaluating Cloud in a secure, privacy-preserving
manner. By swapping roles in the Whitewash protocol, we allow
the mobile device to garble its own inputs, removing the need for
an OT protocol to be performed from the mobile device. While
Whitewash still requires OTs between the Cloud and the evaluating
party, these operations can be parallelized, while the OOT protocol
acts as a non-parallelizable bottleneck in computation.

5.1.1 Asymptotic Complexity
Table 1 shows this complexity for both Whitewash and CMTB.

Note that for the mobile device, Whitewash requires significantly
more symmetric key operations for garbling its own input and ver-
ifying the correctness of its output. By contrast, the OOT protocol
in CMTB requires very few symmetric key operations, but requires
several instantiations of an oblivious transfer. In addition, CMTB
requires that the mobile device check the application server’s input
consistency and verify the correctness of the output using algebraic
operations (e.g., modular exponentiations and homomorphic oper-
ations). Considering the fact that modular exponentiation is signif-
icantly more costly than symmetric key operations, removing these
public key operations from the phone is a significant efficiency im-
provement for Whitewash. We also note that CMTB requires a
two-party fair coin toss at the mobile device, which is not required
by Whitewash.

5.1.2 Security Guarantees
The removal of the OOT protocol in Whitewash not only in-

creases its efficiency when compared to CMTB, it also allows for
stronger security guarantees. In CMTB, security was only possible
if none of the parties collude, since the mobile device possessed
information that would allow the Cloud to recover both input wire
labels for all of the mobile input wires after the OOT. If the mo-
bile device and Cloud collude in the Whitewash protocol, it simply
removes the guarantee of fair release and makes the protocol equiv-
alent to the underlying two-party computation protocol. Thus, the
only guarantee lost is that of fair release at the end of the proto-

col, since a colluding mobile device and Cloud may not release the
one-time pad used to blind the evaluating party’s output. We be-
lieve that this represents a more realistic security setting, since the
mobile device is paying for the assistance of the Cloud and may
collude.

5.2 Comparison to Salus
When considering the operations performed on the mobile de-

vice, the Salus protocol and the Whitewash protocol both make the
mobile device responsible for generating circuit randomness and
garbling its own inputs. However, the Whitewash protocol requires
an added proof of output consistency that is not included in Salus.
While this proof adds some complexity to the protocol, it allows
Whitewash to handle functions where both parties get different out-
put values, while Salus is designed to handle functions with a sin-
gle, shared output value. In addition, the Whitewash protocol out-
sources the generation of the garbled circuit, while the malicious
secure Salus protocol outsources the evaluation. By swapping the
roles of the outsourced task and adding in consistency checks at
the evaluating party, the Whitewash protocol guarantees security in
a stronger adversarial model.

5.2.1 Asymptotic Complexity
Both the Whitewash and Salus protocols use only efficient, sym-

metric key operations, but there is a slight tradeoff in the number
of operations required (Table 1). Salus only requires operations for
the 2σ

5
evaluated circuits, but requires those operations for each bit

of both party’s inputs and the shared output. By contrast, White-
wash requires that the mobile device’s input be committed for all σ
circuits generated, but then only requires correctness proof of the
output wires on the 2σ

5
evaluated circuits. When the application

server’s input is significantly longer than the mobile device’s, this
will cause the Salus protocol to be less efficient than Whitewash.
However, in the average case where both inputs are approximately
the same length, this will mean that Whitewash requires more oper-
ations. This small tradeoff in efficiency is justified by the fact that
Whitewash provides security in a stronger adversarial model than
Salus. We also note that Salus requires a two-party fair coin toss
before the protocol begins, which is not required by Whitewash.

5.2.2 Security Guarantees
The Salus protocol provides equivalent security guarantees to

CMTB, guaranteeing security when none of the parties are collud-
ing. This is a result of outsourcing the evaluation to the Cloud while
allowing the mobile device to generate circuit randomness. If the
mobile device colludes with the Cloud, they can trivially recover
all of the other party’s inputs. By outsourcing the generation of the
garbled circuit and adding in additional consistency checks at the
evaluating party, Whitewash guarantees security under this type of
collusion. As stated above, the only guarantee lost is that of fair
output release, which ultimately reduces Whitewash to the security
of the underlying two-party computation protocol.

6. PERFORMANCE EVALUATION
Our protocol significantly expands upon the implementations of

the PCF garbled circuit generation technique [27] and shelat and
Shen’s garbled circuit evaluation protocol [41]. For experimental
comparison to previous protocols, we acquired the code implemen-
tation of the outsourcing protocol by Carter et al. [8] directly from
the authors, as well as an Android port of the two-party garbled
circuit protocol developed by Kreuter, shelat, and Shen [28]. We
would like to thank the authors of [8, 27, 28, 41] for making their



Input Size Total Gates Non-XOR Gates
Circuit (Bits) KSS PCF KSS PCF

HAM (1600) 1,600 24,379 32,912 17,234 6,375

HAM (16384) 16,384 262,771 376,176 186,326 101,083

MAT (3x3) 288 424,748 92,961 263,511 27,369

MAT (5x5) 800 1,968,452 433,475 1,221,475 127,225

MAT (8x8) 2,048 8,067,458 1,782,656 5,006,656 522,304

MAT (16x16) 8,192 64,570,969 14,308,864 40,076,631 4,186,368

DIJK 10 112/1,040 259,232 530,354 118,357 291,490

DIJK 20 192/2,080 1,653,380 2,171,088 757,197 1,192,704

DIJK 50 432/5,200 22,109,330 13,741,514 10,170,407 7,549,370

RSA-256 256/512 934,092,960 673,105,990 602,006,981 235,925,023

Table 2: Input size and circuit size for all test circuits evaluated.

Hamming 1600 Hamming 16384
0

500

1000

1500

2000

2500

3000

T
im

e 
(s

ec
)

 

 

Circuit

WW
CMTB
KSS

X

Figure 2: Execution time (ms) for Hamming Distance with in-

put sizes of 1,600 and 16,384 bits for σ = 256 (note: log scale).

Note that without outsourcing, only very small inputs can be

computed over. Additionally, even for a large number of in-

put bits, performing OTs on the servers still produces a faster

execution time.

code available and for assisting us with our evaluation2.

6.1 Test Environment
For evaluating our test circuits, we perform our experiments with

a single server performing the role of Cloud and Application server,
communicating with a mobile device over an 802.11g wireless con-
nection. The server is equipped with 64 cores and 1TB of memory,
and we partition the work between cores into parallel processing
nodes using MPI. The mobile device used is a Samsung Galaxy
Nexus with a 1.2 GHz dual-core ARM Cortex-A9 processor and 1
GB of RAM, running Android 4.0.

The large input sizes examined in the Hamming Distance trials
required us to use a different testbed. For inputs as large as 16,384
bits, the phone provided by the above computing facility would
overheat and fail to complete computation. Because the gate counts
for Hamming Distance are significantly smaller than the other test
circuits, we were able to run these experiments on a local testbed.
We used two servers with Dual Intel Xeon E5620 processors, each

2We contacted the authors of the Salus protocol [23] in an attempt
to acquire their framework to compare the actual performance of
their scheme with ours. Because they were unable to release their
code, no sound comparison to their work beyond an asymptotic
analysis was possible. Our code is available at http://www.
foryourphoneonly.org.

3x3 5x5 8x8 16x16
0

500

1000

1500

2000

2500

T
im

e 
(s

ec
)

Circuit

 

 

WW
CMTB

Figure 3: Execution time (ms) for the Matrix-Multiplication

problem with input size varying between 3 × 3 matrices and

16 × 16 matrices for σ = 256 (note: log scale). This figure

clearly shows that the oblivious transfers, consistency checks,

and larger circuit representations of CMTB add up to a sig-

nificant overhead as input size and gate count increase. By

contrast, Whitewash requires less overhead and increases more

slowly in execution time as gate counts and input size grow.

with 4 hyper-threaded cores at 2.4 GHz each for the Cloud and the
Application server. Each server is running the Linux kernel version
2.6, and is connected by a VLAN through a 1 Gbps switch. Our mo-
bile device is a Samsung Galaxy Note II with a 1.6 GHz quad-core
processor with Arm Cortex A9 cores and 2 GB of RAM, running
the Android operating system at version 4.1. The phone connects
to the two servers through a Linksys 802.11g wireless router with a
maximum data rate of 54 Mbps. While this test environment repre-
sents optimistic connection speeds that may not always be available
in practice, it allows us to consider the performance of the protocol
without interference from variable network conditions, and mirrors
the test environments used in previous work [8, 28, 41]. For all
experiments except RSA-256, we take the average execution time
over ten test runs, with a confidence interval of 95%. For RSA-256,
we ran 3 executions.

6.2 Experimental Circuits
To evaluate the performance of our protocol, we run tests over

the following functions. We selected the following test circuits be-
cause they exercise a range of the two major variables that affect
the speed of garbled circuit protocols: input size and gate counts.



WW CMTB
10

0

10
1

10
2

10
3

T
im

e 
(s

ec
)

 

 

CHKS
MOBI
EVL
OT

OT

EVL
MOBI
CHKS

Figure 4: Microbenchmarking execution times (ms) for White-

wash and CMTB over the Matrix-Multiplication problem. We

denote the total time spent in computation for Whitewash as

“MOBI”. Since the mobile device is linked with “CHKS” and

“OT” in CMTB, we do not separate out the mobile time for

that protocol. Notice the dominating amount of time required

to perform oblivious transfers. Moving these operations off the

mobile device removes a significant computation bottleneck.

In addition, these programs are becoming somewhat standard test
applications, having been used as benchmarks in a large amount of
the related literature [8, 27, 28, 41]. All of the programs are im-
plemented with the algorithms used by Kreuter et al. [27] except
for Dijkstra’s algorithm, which matches the implementation used
by Carter et al. [8]:
• Hamming Distance (HAM): The Hamming Distance circuit

accepts binary string inputs from both parties and outputs the
number of locations at which those strings differ. This circuit
demonstrates performance for a small number of gates over a
wide range of input sizes. We consider input strings of length
1,600 bits and 16,384 bits.

• Matrix Multiplication (MAT): Matrix multiplication takes an
n×n matrix of 32-bit integer entries from each party and out-
puts the result of multiplying the matrices together. This cir-
cuit demonstrates performance when both input size and gate
count vary widely. We consider square matrix inputs where
n = 3, 5, 8, and 16.

• Dijkstra’s Algorithm (DIJK): This version of Dijkstra’s algo-
rithm takes an undirected weighted graph with a grid structure
and a maximum node degree of four from the first party, and
a start and end node from the second party. The circuit out-
puts the shortest path from the start node to the end node to
the second party, and nothing to the first. For an n node graph,
the graph description from the first party requires 104n input
bits, while the start and end node descriptions require 8n+ 32
bits. We consider graphs with n = 10, 20, and 50 nodes. Due
to an error in the PCF compiler, we were unable to compile a
program for graphs larger than 50 nodes.

• RSA Function (RSA): The RSA function (i.e., modular ex-
ponentiation) accepts an RSA message from one party and an
RSA public key from the other party and outputs the encryp-
tion of the input plaintext under the input public key. Specifi-
cally, one party inputs the modulus n = pq for primes p and q,
as well as the encryption key e ∈ Zφ(n). The other party inputs
a message x ∈ Z

∗
n, and the circuit computes xe (mod n).

Dijkstra 10 Dijkstra 20 Dijkstra 50
0

500

1000

1500

2000

Circuit

T
im

e 
(s

ec
)

 

 

WW
CMTB

Figure 5: Execution time (s) for Dijkstra’s algorithm with input

sizes of 10, 20, and 50 node graphs for σ = 256. This figure

shows that the Whitewash protocol allows for computation that

was only feasible to be executed in a close to practically useful

time frame.

This circuit demonstrates performance for small input sizes
over very large gate counts. We consider the case where the
input values x, n, and e are 256 bits each. While these are
not secure parameters in practice, the function itself provides
a complex circuit that is scalable on input size and useful for
benchmarking our protocol.

For each test circuit, we consider the time required to execute
and the bandwidth overhead to the mobile device. Table 2 shows
the input size and gate counts for each test circuit, showing the
exact range of values tested for these two circuit variables.

6.3 Execution Time
In all experiments, the efficiency gains of removing oblivious

transfers and public key operations are immediately apparent. To
examine how Whitewash compares to generating garbled circuits
directly on the mobile device, we considered Hamming Distance
as a simple problem (Figure 2). Even with a relatively small gate
count, garbling the circuit directly on the mobile device is only pos-
sible for the small input size of 1,600 bits. Whitewash is capable of
executing this protocol in 96 seconds, while running the computa-
tion directly on the mobile device takes 2,613 seconds, representing
a 96% performance improvement through our outsourcing scheme.
For the very large input size of 16,384 bits, computation directly
on the mobile device ceases to be possible. When comparing to
CMTB, this circuit further illustrates the cost of oblivious transfers
on the mobile device. Even with the significantly reduced num-
ber of OTs allowed by the OOT protocol in CMTB (80 OTs), per-
forming 16,384 malicious secure oblivious transfers between two
servers in Whitewash still runs 30% faster than CMTB.

The matrix-multiplication circuit provides a good overview of
average-case garbled circuit performance, as it represents a large
range of both gate counts and size of inputs. For the input size of
a 3 × 3 matrix, the Whitewash protocol runs in an average of 12
seconds, while CMTB requires 493 seconds, representing a 98%
improvement (see Figure 3). Upon inspecting the micro bench-
marking breakdown of each protocol’s execution in Figure 4, we
observe a significant speedup simply by moving oblivious transfers
off of the mobile device. Even though the number of OTs required
by CMTB is essentially constant based on their application of the



Ishai OT extension, performing standard malicious secure oblivi-
ous transfers in parallel between the servers is much more efficient
than requiring that the phone perform these costly operations. In
addition, if we examine the amount of execution time where the
phone participates in Whitewash, we see that the mobile device
(“MOBI" in Figure 4), takes around 1 second, and is idle during the
majority of computation. By contrast, both the OT and consistency
check phases of CMTB require the mobile device to participate in
a significant capacity, totaling to almost 8 minutes of the compu-
tation. Having the phone perform as little work as possible means
that the Whitewash protocol performance is nearly equivalent to
running the same computation between two server-class machines.

To examine the performance of Whitewash for a more practical
application, we considered the Dijkstra’s algorithm circuit used to
implement privacy-preserving navigation by Carter et al. [8]. They
point out that this application, which has uses from military con-
voys to industrial shipping routes, is a significant first step in pro-
viding privacy for the growing genre of location-based mobile ap-
plications. Unfortunately, the PCF compiler does not optimize the
Dijkstra’s circuit as well as the previous experimental programs,
which is evident in Table 2. In the 10 and 20 node graphs, the
PCF compiler even produces a larger circuit than the compiler used
by KSS. However, despite evaluating larger circuits, the White-
wash protocol still outperforms CMTB in execution time, running
88%,76%, and 51% faster in the 10, 20, and 50 node cases respec-
tively (shown in Figure 5). As circuit compilers continue to im-
prove and produce smaller circuits, the performance gains of the
Whitewash protocol will be even larger. In this experiment, we also
noticed that because Whitewash evaluates and checks circuits si-
multaneously, it created contention for the network stack in our test
server. In a truly distributed environment where each server node
has dedicated network resources, the highly parallelizable struc-
ture of shelat and Shen’s protocol would allow Whitewash to exe-
cute faster. Given that Whitewash can execute Dijkstra’s algorithm
obliviously on the order of minutes, it allows computation consid-
ered only feasible for previous schemes to be performed in a nearly
practical execution time.

The previous experiments clearly show that outsourcing is neces-
sary to run circuits of any practical size. For our final test circuit, we
consider an extremely complex problem to demonstrate the ability
of outsourcing protocols in the worst-case. The RSA-256 circuit
evaluated by Kreuter et al. in [27] and shelat and Shen in [41] rep-
resents one of the largest garbled circuits ever evaluated by a mali-
cious secure protocol. For the RSA-256 problem, Whitewash com-
pleted the computation in 515 minutes. CMTB was unable to com-
plete one execution of the protocol. A large part of this efficiency
improvement results from the underlying protocol of Whitewash,
which uses only symmetric-key operations outside of the oblivious
transfers between the servers. The reduced non-XOR gate counts
and more compact circuit representation of the PCF compiler also
contribute to this improvement. Ultimately, because Whitewash
ensures that the phone participates minimally in the protocol, it no
longer acts as a bottleneck on computation. We essentially reduce
performance of our outsourcing protocol to that of the underlying
two-party protocol, allowing this technique for outsourcing to ben-
efit as more improvements are made in non-outsourced garbled cir-
cuit protocols. In addition, this minimal level of interactivity allows
us to run these protocols with 256 circuits, equivalent to a security
parameter of approximately 80-bit security, which is agreed by the
research community to be an adequate security parameter. Finally,
the phone is only active for a few seconds during this large compu-
tation, keeping its system resources free for other user applications
(or to preserve battery power) while the servers complete the com-

Bandwidth (MB) Reduction Over

Circuit WW CMTB KSS CMTB KSS

HAM (1600) 23.56 41.05 240.33 42.62% 90.20%

HAM (16384) 241.02 374.03 x 35.56% x

MAT (3x3) 4.26 11.50 x 62.97% x

MAT (5x5) 11.79 23.04 x 48.82% x

MAT (8x8) 30.15 51.14 x 41.05% x

MAT (16x16) 120.52 189.52 x 36.41% x

DIJK 10 1.67 20.21 x 91.73% x

DIJK 20 2.85 35.28 x 91.93% x

DIJK 50 6.38 80.49 x 92.08% x

RSA-256 3.97 x x x x

Table 3: Bandwidth measures for all experiment circuits. Note

that there is as much as a 84% reduction in bandwidth when

using the Whitewash protocol.

putation. This shows that Whitewash is capable of evaluating the
same circuits as the most efficient desktop-based garbled circuit
protocols with a minimal overhead cost. Exact execution times are
shown in our technical report [7].

6.4 Network Bandwidth
The Whitewash protocol not only improves the speed of execu-

tion when outsourcing garbled circuit computation, it also signif-
icantly reduces the amount of bandwidth required by the mobile
device to participate in the computation. Table 3 shows the band-
width used by the mobile device for each test circuit. In the best
case, for Dijkstra’s algorithm over 50 node graphs, we observed a
92% reduction in bandwidth between Whitewash and CMTB. This
is a result of the mobile device not performing OTs and only send-
ing relatively small symmetric-key values instead of algebraic el-
ements for consistency checks. For all test circuits, we observed
a small decrease in the amount of improvement between the two
protocols as the input size increased. This is because the number of
commitments sent by the phone in Whitewash increases as the size
of the input grows, while CMTB performs a fixed number of OTs
as the input size increases. However, the oblivious transfers still
require a significant enough amount of bandwidth to make remov-
ing them the most efficient option. When comparing to not out-
sourcing garbled circuit generation, the cost of oblivious transfers
and sending several copies of the garbled circuit to the evaluator
quickly adds up to a significant bandwidth cost. For the small-
est circuit evaluated, outsourcing the circuit garbling reduces the
required amount of bandwidth by 90%. The importance of these
bandwidth reductions is further highlighted when considering mo-
bile power savings. With data transmission costing roughly 100
times as much power as computation on the same amount of data,
any reduction in the bandwidth required by a protocol implies a
critical improvement in practicality.

One challenge encountered during the implementation of the
Whitewash protocol was the extensive use of hardware-specific func-
tions used to implement commitment schemes in shelat and Shen’s
code. Rather than try to port this code over to Android, which
would require significant development of hardware-specific libraries,
we chose to implement the protocol in an equivalent manner by
having the Cloud generate the part of the commitments which re-
quires these functions and send them to the mobile device. The
mobile device then finishes generating the commitments that match
its input and forwards them to the evaluator. Our proofs of secu-
rity remain valid even with this small protocol modification. Our
preliminary implementation using instructions specific to the ARM
architecture has shown that we could further reduce the measured
bandwidth values by over 60%. With already significant bandwidth



reductions from previous outsourcing schemes, our protocol will
see further improvements as mobile hardware begins to incorpo-
rate more machine-specific libraries.

7. CONCLUSION
With the increasingly pervasive and personal nature of mobile

computing, garbled circuits provide a solution that preserves both
privacy and application functionality. However, to make these com-
putationally expensive protocols usable on mobile devices, secure
outsourcing to the cloud is necessary. We develop a new scheme
that eliminates the most costly operations, including oblivious trans-
fers, from the mobile device. By requiring that the mobile device
instead produce the randomness required for circuit generation, we
significantly reduce the number of algebraic group operations and
communication rounds for the mobile device. At the same time, we
bolster the security guarantees against certain types of collusion,
yielding a more secure protocol than any other in this space. Our
performance evaluation shows average gains of 75% for execution
time and 60% for bandwidth over the previous outsourcing proto-
col. These improvements allow large circuits representing practical
applications to be computed efficiently from a mobile device. As a
result, we show that garbled circuit protocols can be made nearly
as efficient for mobile devices as they are for server-class machines.

Acknowledgments This material is based on research sponsored
by DARPA under agreement number FA8750-11-2-0211. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References
[1] M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra compu-

tations. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2010.

[2] Y. Aumann. Security Against Covert Adversaries: Efficient Protocols for Real-
istic Adversaries. Journal of Cryptology, 18(3):554–343, 2010.

[3] D. Beaver. Server-assisted cryptography. In Proceedings of the workshop on
New security paradigms (NSPW), 1998.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling
from a fixed-key blockcipher. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, 2013.

[5] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Proceedings of the international conference on Theory and
Application of Cryptology and Information Security, 2005.

[6] H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. For your phone only: cus-
tom protocols for efficient secure function evaluation on mobile devices. Jour-
nal of Security and Communication Networks (SCN), 7(7):1165–1176, 2014.

[7] H. Carter, C. Lever, and P. Traynor. Whitewash: Outsourcing garbled circuit
generation for mobile devices. Cryptology ePrint Archive, Report 2014/224,
2014. http://eprint.iacr.org/.

[8] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure Outsourced Garbled
Circuit Evaluation for Mobile Devices. In Proceedings of the USENIX Security
Symposium, 2013.

[9] comScore. comScore Reports February 2013 U.S. Smartphone Subscriber
Market Share. http://www.comscore.com/Insights/Press_
Releases/2013/4/comScore_Reports_February_2013_U.S.
_Smartphone_Subscriber_Market_Share, 2013.

[10] I. Damgård, M. Geisler, and J. B. Nielsen. From passive to covert security
at low cost. In Proceedings of the 7th international conference on Theory of
Cryptography, 2010.

[11] I. Damgard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Proceedings of the Annual Interna-
tional Cryptology Conference on Advances in Cryptology, 2012.

[12] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES
circuit. In Advances in Cryptology - CRYPTO, 2012.

[13] S. D. Gordon, J. Katz, V. Kolesnikov, A.-l. B. Labs, F. Krell, and M. Raykova.
Secure Two-Party Computation in Sublinear (Amortized) Time. In Proceed-

ings of the ACM conference on Computer and communications security (CCS),
2012.

[14] M. Green, S. Hohenberger, and B. Waters. Outsourcing the Decryption of ABE
Ciphertexts. In Proceedings of the USENIX Security Symposium, 2011.

[15] C. Hazay and Y. Lindell. Efficient Protocols for Set Intersection and Pattern
Matching with Security Against Malicious and Covert Adversaries. Journal of
Cryptology, 23(3):422–456, 2008.

[16] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Compu-
tation Using Garbled Circuits. In Proceedings of the USENIX Security Sympo-
sium, 2011.

[17] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-
honest protocols with dual execution. In Proceedings of the IEEE Symposium
on Security and Privacy, 2012.

[18] Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Advances in Cryptology–CRYPTO, 2013.

[19] N. Hustead, S. Myers, abhi shelat, and P. Grubbs. GPU and CPU paralleliza-
tion of honest-but-curious secure two-party computation. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC), 2013.

[20] A. Iliev and S. W. Smith. Small, Stupid, and Scalable: Secure Computing with
Faerieplay. In The ACM Workshop on Scalable Trusted Computing, 2010.

[21] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In Proceedings of the IEEE Symposium on Security and Privacy,
2008.

[22] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computa-
tion. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.
iacr.org/.

[23] S. Kamara, P. Mohassel, and B. Riva. Salus: A system for server-aided secure
function evaluation. In Proceedings of the ACM conference on Computer and
communications security (CCS), 2012.

[24] F. Kerschbaum. Collusion-resistant outsourcing of private set intersection. In
Proceedings of the ACM Symposium on Applied Computing, 2012.

[25] M. Kiraz and B. Schoenmakers. A Protocol Issue for The Malicious Case of
Yao’s Garbled Circuit Construction. In Proceedings of the Symposium on In-
formation Theory in the Benelux, 2006.

[26] M. S. Kiraz. Secure and Fair Two-Party Computation. PhD thesis, Technische
Universiteit Eindhoven, 2008.

[27] B. Kreuter, a. shelat, B. Mood, and K. Butler. PCF: A portable circuit format for
scalable two-party secure computation. In Proceedings of the USENIX Security
Symposium, 2013.

[28] B. Kreuter, a. shelat, and C. Shen. Billion-Gate Secure Computation with Ma-
licious Adversaries. In Proceedings of the USENIX Security Symposium, 2012.

[29] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with
Ordered Binary Decision Diagrams. In Proceedings of the ACM conference on
Computer and communications security (CCS), 2006.

[30] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert ad-
versaries. In Advances in Cryptology–CRYPTO, 2013.

[31] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proceedings of
the Annual International Cryptology Conference on Advances in Cryptology,
2000.

[32] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In Proceedings of the annual
international conference on Advances in Cryptology, 2007.

[33] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Proceedings of the conference on Theory of cryptography,
2011.

[34] L. Malka. Vmcrypt: modular software architecture for scalable secure compu-
tation. In Proceedings of the 18th ACM conference on Computer and commu-
nications security, 2011.

[35] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay–a secure two-party
computation system. In Proceedings of the USENIX Security Symposium, 2004.

[36] A. Miyaji and M. S. Rahman. Privacy-preserving data mining in presence of
covert adversaries. In Proceedings of the international conference on Advanced
data mining and applications: Part I, 2010.

[37] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In Proceedings of the Public Key Cryptography conference, 2006.

[38] B. Mood, L. Letaw, and K. Butler. Memory-efficient garbled circuit generation
for mobile devices. In Proceedings of the IFCA International Conference on
Financial Cryptography and Data Security (FC), 2012.

[39] N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-Place” anonymous network-
ing using secure function evaluation. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2011.

[40] a. shelat and C.-H. Shen. Two-output secure computation with malicious adver-
saries. In Proceedings of the Annual international conference on Theory and
applications of cryptographic techniques, 2011.

[41] a. shelat and C.-H. Shen. Fast two-party secure computation with minimal
assumptions. In Proceedings of the ACM conference on Computer and commu-
nications security (CCS), 2013.

[42] D. Talbot. Security in the ether. http://www.technologyreview.
com/featuredstory/416804/security-in-the-ether/, 2009.

[43] A. C. Yao. Protocols for secure computations. In Proceedings of the Annual
Symposium on Foundations of Computer Science, 1982.


